Near-Edge X-ray Absorption Fine Structure Imaging of Spherical and Flat Counterfaces of Ultrananocrystalline Diamond Tribological Contacts: A Correlation of Surface Chemistry and Friction
نویسندگان
چکیده
A recently installed synchrotron radiation nearedge X-ray absorption fine structure (NEXAFS) full field imaging electron spectrometer was used to spatially resolve the chemical changes of both counterfaces from an ultrananocrystalline diamond (UNCD) tribological contact. A silicon flat and Si3N4 sphere were both coated with UNCD, and employed to form two wear tracks on the flat in a linear reciprocating tribometer. The first wear track was produced using a new, unconditioned sphere whose surface was thus conditioned during this first experiment. This led to faster run-in and lower friction when producing a second wear track using the conditioned sphere. The large depth of field of the magnetically guided NEXAFS imaging detector enabled rapid, large area spectromicroscopic imaging of both the spherical and flat surfaces. Laterally resolved NEXAFS data from the tribological contact area revealed that both substrates had an as-grown surface layer that contained a higher fraction of sp-bonded carbon and oxygen which was mechanically removed. Unlike the flat, the film on the sphere showed evidence of having graphitic character, both before and after sliding. These results show that the graphitic character of the sphere is not solely responsible for low friction and short run-in. Rather, conditioning the sphere, likely by removing asperities and passivating dangling bonds, leads to lower friction with less chemical modification of the substrate in subsequent tests. The new NEXAFS imaging spectroscopy detector enabled a more complete understanding of the tribological phenomena by imaging, for the first time, the surface chemistry of the spherical counterface which had been in continual contact during wear track formation.
منابع مشابه
Tribochemistry and material transfer for the ultrananocrystalline diamond-silicon nitride interface revealed by x-ray photoelectron emission spectromicroscopy
The authors report tribochemical changes due to sliding of a silicon nitride Si3N4 ball against an ultrananocrystalline diamond UNCD thin film. Unidirectional sliding wear measurements were conducted for 2000 cycles using a ball-on-disk apparatus with a 3/16 in. diameter Si3N4 ball at a sliding speed of 3.3 mm/s and a normal load of 98.0 mN nominal Hertzian stress of 0.6 GPa in a nitrogen envir...
متن کاملCryogenic vacuum tribology of diamond and diamond-like carbon films
Friction measurements have been performed on microcrystalline, ultrananocrystalline, and diamond-like carbon DLC films with natural diamond counterfaces in the temperature range of 8 K to room temperature. All films exhibit low friction 0.1 in air at room temperature. In ultrahigh vacuum, microcrystalline diamond quickly wears into a high friction state 0.6 , which is independent of temperature...
متن کاملAccounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.
Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, ...
متن کاملZSM-5 Zeolite As Host Material for Semiconductor Nanoparticles
This work describes the optical and structure properties of nickel sulfide and cobalt sulfide nanoparticles in ZSM-5 zeolite. The samples were obtained by sulfidation of the Ni2+ and Co2+ ion-exchange ZSM-5 zeolites in a Na2S solution at room temperature. The optical properties of the samples were studied by UV-visible spectroscopy. Their crystalline structure and morphology were studied by X-r...
متن کاملBoron-doped ultrananocrystalline diamond synthesized with an H-rich/Ar-lean gas system
This paper reports the recent development and applications of conductive boron-doped ultrananocrystalline diamond (BD-UNCD). The authors have determined that BD-UNCD can be synthesized with an H-rich gaseous chemistry and a high CH4/H2 ratio, which is opposite to previously reported methods with Ar-rich or H-rich gas compositions but utilizing very low CH4/H2 ratios. The BD-UNCD reported here h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011